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Abstract. Different procedures for obtaining all the Lagrangian constraints from the 
Hamiltonian constraints are studied. The connection of arbitrary functions in both Hamil- 
tonian and Lagrangian formalisms is also studied. As a consequence we give a way to 
pass directly from the final Hamilton-Dirac equations to the Euler-Lagrange ones. 

1. Introduction 

In previous papers [ 1,2], we obtained new results concerning the equivalence between 
the Lagrangian and Hamiltonian formalisms for constrained systems. The equivalence 
between both formalisms was shown in the sense that, given a solution q ( t )  of 
Euler-Lagrange equations of motion, the functions q(  t )  and p ( t )  = 
(dL /dq) (q (  t ) ,  d q l d t )  are solutions of the Hamiltonian-Dirac equations of motion and 
vice versa. A constructive algorithm-different, but equivalent to, the standard ones 
(see, for example [3])-was given to build up, step by step, the set of Hamiltonian 
constraints and a new algorithm for the Lagrangian case, which has its roots in the 
Hamiltonian one, was introduced. 

The present paper gives some new results on the lines of [ l ,  21. In the following 
we will use the same conventions and notation. In § 2 some preliminary aspects are 
treated. In § 3 some new results on the connection between Hamiltonian and 
Lagrangian constraints are given. In P 4 the relations between the arbitrary functions 
of both formalisms are established. In § 5 we give a new procedure to pass from the 
final Hamilton-Dirac equations of motion, on the surface of constraints, to the final 
Euler-Lagrange ones. Section 6 is devoted to some conclusions. 

2. Preliminary aspects 

When one starts from a singular Lagrangian, evolution is subjected to a certain 
ambiguity due to the appearance of arbitrary functions either in the Lagrangian or 
Hamiltonian formalism. Let us first consider the Hamiltonian case. The generator of 
time evolution on the surface MO of primary constraints in cotangent space T*Q is 

&={-, % ) + u Y ( t ) { - ,  4 9  (1) 

where Xc is one of the possible canonical Hamiltonians [3], defined in T*Q and all 
giving the same function in M O .  4Lo), Y = 1,. . . , m , ,  are the primary constraints and 
u y  are, in principle, arbitrary functions of time. It is worthwhile remarking that these 
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functions have a definite form, up(q,  q ) ,  on the tangent space TQ (see [2], equation 
(2.17))1 and some of them will be determined as functions of T*Q by requiring DH 
to be tangent to the surface of constraints. Generally, some of these functions will 
remain undetermined at the end of the consistency algorithm. 

On the other hand, the evolution operator in the Lagrangian case, defined on the 
surface S ,  of TQ by the primary Lagrangian constraints, is [2] 

D ~ =  8+77Y(t ) r , ,  (2) 

where 

a a 8 = q - + ( M a  ) 7 
as as 

a2Rc a'r$l"' M = FL* -+ v'"(q,  q)FL* - 
aP aP aP aP 

(3) 

(4) 

FL* being the pull-back of the fibre derivative of the Lagrangian. 
Let us observe that, owing to the second-order character of the operator DL (the 

coefficient of a/aq is just q) ,  every integral curve ( q ( t ) ,  q ( t ) )  of DL will satisfy 
dq/dt  = q( t ) .  

~ ' ( f )  are, in principle, arbitrary functions of time. A certain number of these 
functions will be determined requiring DL to be tangent to the surface of constraints. 
It is shown in [2] that this number is just the same as the one in the Hamiltonian case. 

We have seen, therefore, that the evolution operators DH, DL contain a certain 
degree of arbitrariness. It will be useful to consider a third evolution operator which 
has no ambiguity at all. This operator, K [ 1,2,4], takes a function in cotangent space 
and gives its time derivative as a function in tangent space: 

K : A'( T*Q) + A'( TQ) 

So we have the scheme (not commutative!) 

- AO( T*Q).  

We shall now derive some relations connecting the different operators DL, DH , K ,  
in (7) .  

From the results obtained in [2] (see, in particular, the equivalence of (2.2) and 
(2.17) of [2] and also equation (2.22) of [2]) we know the following identities in 

t This statement has the following meaning. Let the determined functions in TQ be u w ( q ,  4). Then, if we 
have an integral curve ( q (  t ) ,  p (  2 ) )  of D, on MO that corresponds to some given functions up( t ) ,  the following 
relation holds: v ' ( q ( t ) ,  d q l d t )  = u " ( t ) ,  CL = 1 , .  . . , m,. 
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tangent space: 
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Now, given g E A'( T* Q )  we can calculate 

and using (8) and (9) 

We recognise on the RHS of (10) the pullback of DHg but with the substitution of the 
arbitrary functions u" ( t )  by its values on TQ: v p ( q ,  4 ) .  

Considering again g E A'( T*Q), we also get 

where we distinguish between aL/aq acting on A'( TQ) and dH/aq acting on A'( T*Q). 
q stands for aL/aq. 

Thus we have 

and in an analogous way 

With these relations in mind, and taking into account (4) and (Al) ,  

and therefore 

a 
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and 

We can now calculate 

aL a 
as aq 

D L o  FL* = q ' y o F L *  + a , M l k ~ o  FL* + v u (  t ) r y O  FL* 

but T,oFL* = 0 because r,, v = 1,. . . , m,, span ker FL,. Then, using (13) and (14), 
we get 

a 

aH aL a a V "  a 

D L  0 FL* = q'FL* 0 

= 4FL* 0- + - FL* 0- - (ay,,) - FL* 0- 

aq d P  aq apJ 
or 

If we recall (see [2], equation (4.4)) that ( a y y )  are the primary Lagrangian con- 
straints which define the surface SI ,  we have 

Kg = DL(FL*g) g E A'( T*Q).  (16) 
SI 

Equations (10) and (15) show how the diagram (7)  works. 

3. New expressions for the Lagrangian constraints 

The equivalence of the Euler-Lagrange and Hamilton-Dirac equations yields immedi- 
ately the result that FL*+ = 0 is a Lagrangian constraint V 4  E %, (e being the set of 
Hamiltonian constraints. 

All these Lagrangian constraints are projectable (they come from a Hamiltonian 
constraint) and therefore they conserve the foliation of TQ induced by FL. Let us 
comment on this fact briefly. Given a point ( q o ,  p o )  E hoc T*Q, the anti-image 
FL-'(qo, p o )  is a sheet in TQ. This sheet is defined by qo and by the m,-parametric family 

4 o ( P " )  = (9, %) (qo ,  P 0 ) + P P { 9 ,  4jLo')(qo, Po).  (17) 
This sheet can also be seen as a maximal integral surface of ker FL*, spanned by 

the fields r,, Y = 1, .  . . , 172,.  Since T,oFL* = 0 we see that the sheets are either entirely 
inside or entirely outside the surface defined by constraints FL"4, 4 E %. 

But, on the other hand, the evolution operator in the final surface MFc T*Q of 
Hamiltonian constraints is (see [2], equation (3.42)) 

DHF = {-, x F ) + U y ' ( f ) { - ~  4:)) (18) 
MF 

where ZF is the first class Hamiltonian and 4:), v f =  1, .  . . , r, are the final primary 
first class constraints. Therefxe, given (qo ,  p o )  E MF, the possible associated initial 
conditions in TQ are qo and the r parametric family: 

4 O ( P  "'1 = (4 ,  %F)(qO, PO) + P  u'{q, 4i:)}(qO, PO). (19) 
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Comparison of (17) and (19) (we can substitute Xc in (17) by XF which simply 
corresponds to a change of parameters p ” )  shows that we must reduce the sheet (17) 
to (19) in order to determine the surface of Lagrangian constraints. This fact shows 
that FL*4 = 0, 4 E %, is not the whole set of Lagrangian constraints. We shall now 
derive the constraints which are missing. 

The first class Hamiltonian XF appearing in (19) is [2] 

XF= Xc+Ai”‘(q,P)4jiq‘ (20) 
where +::, pf= r +  1,. . . , m , ,  are the final primary second class constraints and 
A p f ( q ,  p )  are a canonical determination of the (in principle, arbitrary) functions up( t )  

So, keeping ( q o , p o )  in MF, the possible velocities that give, together with qo, a 
well posed initial condition in TQ are those of (19). Using the determination in TQ 
of parameters p”‘, v”f(q,  q ) ,  we get the implicit equation for qo(pc”f) :  

of (1). 

4 0 =  (4, XCHYO,PO)+ A”(90,  Po){41 4:;l(qo, PO)+ ~ ” ‘ ( ~ 0 , 4 0 ) ~ ~ , 4 1 9 ‘ 1 ( ~ 0 , P 0 )  

4 0 =  FL*{q, XcHqo, 40)+(FL”A”)(qo, 40)Y&o, 4 0 ) + ~ ” ‘ ( ~ o , 4 0 ) Y r f ( ~ 0 ,  4 0 ) .  

or 

(21) 

Comparing (21) with the identity (8) at the point ( q o ,  qo) we obtain 

O = ( ~ L * ~ ” ~ ~ 0 , 4 o ) - ~ ~ ‘ ( q o ~  4 0 ) > Y F f ( q o ,  4 0 ) .  

But the vectors yp,(qo, qo), pf= r +  1, .  . . , M , ,  are all independent. Therefore 

xFf (qo ,  &,):=FL*A”f(qo, 4 O ) - ~ ” ( q o ,  q O ) = O .  

Thus the functions x@‘ are Lagrangian constraints. 
These functions produce new restrictions on TQ that were not taken into account 

by FL*4 = 0, V 4  E (e. This is because x@f cut the sheets FL-’(q, p )  whereas FL*4 = 0 
does not. The point is the following: recalling T,oFL* = 0, we have rcLxfif= -Sgf 
(T,v” = Sk  comes from applying r p  to both sides of (8)). Since the sheets FL-’(q, p )  
are the integral surfaces of I‘”, g = 1, .  . . , m , ,  we see that surfaces xpf= 0 cut these 
sheets and, moreover, that they are all independent. 

We now need to prove that FL*4 = 0, V 4  E (e, and x@f = 0, pf= r + 1, . . , , m , ,  are 
all the Lagrangian constraints. We bear in mind that, if a point ( q o ,  qo) belongs to 
the surface of Lagrangian constraints, it can be taken as the initial condition for the 
trajectories which are solutions of Euler-Lagrange equations. The converse is obvious: 
an initial condition always belongs to the surface of constraints. 

Now consider a point (qo ,  p o )  E M. By the same reasons given above, it can be 
used as the initial condition to solve Hamilton-Dirac equations. The first half of the 
HD equations is (19) 

40(p”‘) = (4, XF}(qO, PO)+ppf{q, 4f:>(qO, PO). 

Since we know from [l, 21 that there is a complete equivalence between solutions 
in either the Hamiltonian or Lagrangian formalism, the points ( q o ,  qo(ppf ) )  are the 
possible Lagrangian initial conditions whereas ( qo, p o )  remains in M. These points 
define, therefore, the surface of Lagrangian constraints. 

What restrictions do these point satisfy? First, they have to be in FL-’( MF) because 
points satisfying (19) are a subset of those satisfying (17). This condition is just 
FL*+ = 0, V 4  E (e. But the only velocities qo(p’f, pGf) admissible as initial Lagrangian 
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conditions are those of (19), i.e. when p"f=O. This requirement is equivalent to 
imposing the constraints ,ypf = 0. 

In fact 

x"(40, 4 0 ( P W f ,  PG" 
= X Y  40,40(0)) + P"f(r,fx% 40,40(0)) + P "(r O f X P ' )  (40 9 40(0) 1 

with no higher-order terms in p because, from rwxLXpf= -SEf, we derive 

rprvXfif=rp(-8$) =o. 
Since xPf (q0 ,  q ( 0 ) )  = 0 because x"f are Lagrangian constraints and qo(0) is described 
by (19), we have 

x"( qo, qo(p h, p Pf)) = -p"fsf; - p %SPf = - p  &* 

We have seen, therefore, that the initial Lagrangian conditions only have the restrictions 
FL"#J = 0, V#J E % and x P f =  0. Thus we have proved the following. 

Theorem 1. All the Lagrangian constraints can be written in the form: 

FL*#J = 0 V#J € %  (22) 

x@i:= FL*hPf-uPf=O pf= r + l , .  . . , m , .  (23) 

Let us observe, by the way, that constraints (22)-which are the projectable con- 
straints-are the ones which appear (see Gotay and Nester [3]) when the second-order 
condition is eliminated from the EL equations. Therefore the second-order condition 
is responsible for the non-projectable constraints (23). 

It is now easy to calculate the number of Lagrangian constraints. Let us consider 
a case such that the Hamiltonian analysis gives k constraints (i.e. the dimension of 
MF is 2n - k ) ,  of which m ,  of them form the set of primary constraints, and a certain 
number of these, let us say r, are the final primary first class constraints. 

The number of independent Lagrangian constraints of the form (22), i.e. the maximal 
set of projectable constraints, is k - m ,  because FL*I#J is identically zero if #J is a 
primary constraint whereas for secondary constraints FL* #J gives independent func- 
tions. 

The rest of the Lagrangian constraints (23), i.e. the strictly non-projectable ones, 
number m ,  - r. Thus we have the following theorem. 

Theorem 2. The number of independent Lagrangian constraints is k - r, k being the 
number of independent Hamiltonian constraints and r the number of final primary 
first class constraints. 

We conclude therefore that, in the general case, the final surfaces of motion MF c T* Q, 
SF c TQ do not have the same dimensions. This fact does not contradict the equivalence 
between the equations of motion in both formalisms, which was proved in [2]. We 
may wonder whether the number of degrees of freedom is different in one or another 
formalism. The answer is no: it is possible to prove [ 5 ]  that, when the gauge invariances 
are taken into account and superfluous variables are eliminated, the number of true 
degrees of freedom is the same. 
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4. The arbitrary functions 

The evolution operator in SI c TQ is (2) 

DL= ~ 5 + ~ * f ( t ) r ~ ~ +  ,-,*f(t)rlif. 

The action of DL over Lagrangian constraints must lead to new constraints or to 
the determination in TQ of some arbitrary functions r ] ( t ) .  The classification of 
constraints given by (22) and (23) is very suited to this end. 

O =  D,x”~= ( D ~ o F L * ) A ~ ~ - D ~ v @ ~ ~  

Let us consider (23). Tangency of DL to the constraint ,y’f in SF means 

where = means equality on S, .  

Then, taking into account the appendix, we get 
But we know from (16) DLoFL* K. We also know T p  0 FL* = 0 and T,v” = 8 ; .  

Therefore we arrive at the determination of v*f (on S,) :  

So, stability of the non-projectable constraints (23) leads simply to the determination 

Let us now consider the action of DL on the projectable constraints. Recalling 
in TQ of the arbitrary functions v”f(t). 

(16) we have 

DL(FL*+) = K+. (25) 
SI 

Therefore, as a first consequence, K+ = 0 are Lagrangian constraints. In fact, they 
are all the Lagrangian constraints. This can be seen by considering that the stability 
of the non-projectable constraints x”f does not give new constraints, whereas the 
stability of the projectable ones is, as we see from (25), just K+ = 0. Thus, all the 
secondary Lagrangian constraints can be written in the form K+ = 0. On the other 
hand, we know [2] that the primary Lagrangian constraints, (a ,  y p )  = 0, satisfy 

Therefore we have the following. 

Theorem 3. All the Lagrangian constraints can be written in the form 

K+=O + E %. 

5. From Hamilton-Dirac to Euler-Lagrange equations 

The evolution operator K : A’( T*Q) + A’( TQ) has produced a deep insight into the 
connection of the Hamiltonian and Lagrangian formalisms for constrained systems. 
Let us show how powerful this operator is in obtaining the final Euler-Lagrange 
equations (on S,)  from the final Hamilton-Dirac equations (on M,). 
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The final evolution operator in T*Q can be written as 

D H  = {-, x J + A @ f ( q , P ) { - ,  4:;I+~w{--,  4;;) 
MF 

with uFf(  t )  arbitrary functions of t. 
An integral curve ( q (  t), p (  t ) )  E MF of D ,  will satisfy 

d q l d t  = ( h q ) = :  g(q, P, t )  

and the accelerations will be obtained by 

but since we are on a curve ( q (  t) ,  p (  t ) )  which is a solution of the equations of motion, 
we can replace p by @(q,  q )  (we apply FL”) and also p by aL/aq. Therefore we arrive 
at 

We are considering here variables q, p satisfying the constraints 4 = 0, Vqh E %, so 
the variables (4, q )  in (26) satisfy the Lagrangian constraints K 4  = 0, V 4  E (e. Bearing 
this in mind, let us calculate (26): 

d2q = K { q ,  X,}+(KA@f)FL*{q, (bjZq‘}+(FL*APi)K{q, 4$?:} 
dt2 SF 

(27) 
durf 

+ u Y t ) K { q ,  qh;;l.+xI4, 4::) 

but FL*A@f= v p f  on S ,  and up[(  t )  = v”f(q,  q )  on a motion q( t ) .  Therefore 

and using the explicit form of K :  

Note the presence of the piece M of (4) in (29). On the other hand, derivation 
with respect to q of the Lagrangian identity (8) gives 

and substitution in (29) 
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or 

But in the previous section we determined the functions 

Thus equations (30) are just the final Euler-Lagrange equations of motion (see [2], 
3 4) 

As a by-product of (30) we have obtained the relation between the remaining 
arbitrary functions uwf of the Hamiltonian and Lagrangian formalisms: 

6. Conclusions 

In this work we have pursued the study of the connection between the Lagrangian 
and Hamiltonian formalisms for constrained systems begun in [ 1,2]. The relevance 
of the evolution operator K : A'( T*Q) + A'( TQ) introduced in [2] is emphasised 
through several applications. Thus we show that all the Lagrangian constraints can 
be obtained by applying K to the Hamiltonian constraints. The operator K has also 
been used to connect the so-called arbitrary functions of Hamiltonian and Lagrangian 
formalisms and also to give a procedure to derive the final form of the Euler-Lagrange 
equations of motion (in a normal form on the surface of constraints) from the final 
Hamilton-Dirac equations of motion. We have also presented a new form for the 
Lagrangian constraints, part of which are the pull-back of the Hamiltonian constraints 
and the rest come from the elimination, due to consistency requirements, of part of 
the initial arbitrariness of the Hamilton-Dirac time evolution operator. This 
classification of Lagrangian constraints separates the maximal set of projectable 
Lagrangian constraints from the set of strictly non-projectable constraints. Owing to 
this separation, we can calculate the dimension of the final surface of Lagrangian 
constraints. It turns to be 

dim SF = dim MF+ r 

r being the number of final primary first class Hamiltonian constraints. 
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Appendix 

We derive some results used in 9 9  2 and 4. From the identity (8): 

4 = FL*{q, %cl+ v w ( 9 ,  4)FL*{q, +Ip’l 
the derivation with respect to q gives 

If we remember that 

a f @ / a q =  w 
and we define (4) 

we have 

This is an important completeness relation which has been used to construct the 

A consequence of this completeness relation will now be deduced. 
Contraction of ( A l )  with dv”/aq’ gives 

time evolution Lagrangian operator (2). 

But 

Thus 

av’ 
a q’ Wi,Mk’-=O. 

We know a basis, y,, p = 1 , .  . . , m,, of the null vectors of W. Therefore 

and then 
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i.e. 
a 

( a M )  -?Iy = 0. 
aq  s, 

2715 

(A2) 

This is the result used in 0 4. 
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